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Abstract

Open Data Cubes are platforms that contain open source satellite data and provide
analysis tools for governments or organizations. The Swedish version is known as Swedish
Space Data Lab (SSDL) and this master thesis was a part of it, providing the first analysis
tools of the SSDL. Within a smaller project in the SSDL a drought analysis was done
for the region of Mälardalen. The thesis work consisted on developing data analysis
methods using packages for machine learning and statistical analysis in Python and
Jupyter Notebooks. The drought analysis consisted of a two-year comparison between
2018 and 2019 due to limitations on the data availability. It was found that first year was
drier than the second. However, longer time series would be needed in order to observe
trends related to possible changes in the climate.
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Chapter 1

Introduction

In the past all the data coming from the first satellites were stored in large rolls
of tape. In 2011, there was a project called Unlocking the Landsat Archive that had
as a main goal copy the Landsat data from tapes onto spinning disks at the National
Computational Infrastructure. Geoscience Australia was part of that project and after
it, they developed the Australian Geoscience Data Cube (AGDC) which is the origin of
the Open Data Cube project (ODC).

As new generations of satellites are being launched, the amounts of stored data keep
growing exponentially and therefore appears the necessity of managing that data effi-
ciently. The main objective of the Open Data Cube is to create an open source in-
frastructure that allows any governments or organizations in the world to easily access,
manage and analyze large amounts of Geographic Information System (GIS) data or
Earth observation (EO) data.

1.1 Motivation

The Swedish Space Data Lab (SSDL) at RISE, in partnership with LTU, Swedish Na-
tional Space Agency and AI Innovation of Sweden, is a project based on the Open Data
Cube. It aims to be a national resource for the Swedish authorities’ work on Earth ob-
servation data and for the development of AI-based analysis of data generated in space
systems. The purpose of the Space Data Lab is to increase the use of data from space
for the development of society and industry and for the benefit of the globe. It means
support actions to improve sustainability and minimize effect on the environment.

1.2 Thesis Aim

This thesis was part of the start up of the Space Data Lab, more specifically, a shorter
project within it called Pilot Mälardalen. Its aim was to develop data analysis methods

7



8 Introduction

using packages for machine learning and statistical analysis in Python. The data analysis
developed in this master thesis project was a first part of the services that the Space Data
Lab will be able to provide.

1.3 Objectives

In order to accomplish the thesis aim, the following steps were defined:

1. Become familiar with Python and Jupyter Notebooks.

2. Get comfortable using the Space Data Lab Jupyter Hub.

3. Get started with basic analysis tools taken from the Australian Open Data Cube
documentation.

4. Define the use case and select the appropriate spectral index/indices used for anal-
ysis.

5. Create a first version of an analysis notebook trying out the first implementation
methods.

6. Get familiar with Gaussian Process Regressions and apply it to the analysis.

7. Work on an iterative process until a final version of a notebook is satisfactory.

8. Validate the method.

9. Document all the steps in this report.

1.4 Delimitations

The data available in the Space Data Lab at the time this master thesis was being done
was crucial in the definition of the use cases. Since this master thesis aim was to develop
analysis tools for the Space Data Lab within the Pilot Mälardalen, the use case set the
analysis topic of this thesis to drought. The data also had limitations such as having to
be rejected in case of clouds, or having a time interval between images dependant on the
satellite’s trajectory.

1.5 Thesis Outline

The following chapter provides the reader with the necessary background to understand
this thesis’ work. Chapter 3 explains the material and the methods of the thesis. Chapter
4 shows and discusses the obtained results. Chapter 5 summarizes the conclusions and
mentions possible future work.



Chapter 2

Background

2.1 Open Data Cube

The Open Data Cube (ODC) is an open source project that involves the combined actions
of people and organizations which aim to build the capability of working with Earth
observation data. In other words, it combines the hardware where the data is stored,
the software or platform built to access that data, plus the applications or analysis tools
with analysis ready data (ARD). This three main parts are clearly represented in Figure
2.1.

Figure 2.1: Three Main Parts Composing the Open Data Cube. [1]

One of the main advantages of the ODC is that it does not require the data to be
stored in a specific place or way or that it does not require the user to know where the
data is, the Data Cube’s software organizes and finds it by itself. Another advantageous

9



10 Background

aspect of the ODC is that including the analysis tools makes data available and easy to
use for anyone.

Figure 2.2: Open Data Cube Ecosystem. [2]

Figure 2.2 shows the ODC ecosystem. The Landsat, Sentinel and MODIS are the
Earth observation satellites whose data is typically in the Data Cube. The ODC consists
of a core, algorithms, and applications. On a technical level, it can be separated in data,
index, and software. Data is usually file-based, the index allows the user to choose a time
and a location and get the data without knowing exactly where the files were stored or
how to access them.

The software, which consists of a Python library, allows the user to perform a series of
functions for managing data such as indexing data (add records to the index), ingesting
data (optimize indexed data for performance) or querying data (returning data in a
standard format).

The applications, which will be discussed further in another section, provide enough
information to help in decisions in very different areas like environmental, climate change,
disaster prevention, security, etc. The ODC will always be 100% open-source.[2]

As mentioned before, the Open Data Cube has its origin in Australia so the first data
that were made available in the cube came from the Landsat corresponding to that area.
Nevertheless, the objective in 2007 was to achieve a global network of data cubes and
to have deployed twenty operational data cubes in twenty countries by the year 2022.
Nowadays there are nine operational data cubes in countries like Australia, Colombia,
Switzerland, Taiwan, Kenya, Tanzania, Sierra Leone, Ghana, and Senegal. Some others
are under development or review as shown in Figure 2.3. The Swedish Space Data Lab
is not listed yet as an official ODC.
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Figure 2.3: Global Impact of the Open Data Cube. [1]

With this global network, the impact of satellite data will be increased because the
Open Data Cube is a great tool that makes it easier to access, organize and use any layer
of data that in the past was not being used. Once the structure is created it provides
Analysis Ready Data (ARD) for governments or organizations helping them in decision
making for deforestation, water quality, illegal mining or others which is the immediate
application of the ODC.[3]

Some examples of the first operational Data Cubes are briefly described below:

Digital Earth Australia

Digital Earth Australia was the first implementation of a Data Cube and, as said before,
it started as a digitization of satellite imagery. It is operative and it is extensively
documented through GitHub repositories. They have been the developers of the core
functions and basic functionality of the ODC and since it is an open source software, all
the other data cubes, including the Swedish, have made use of these functions.

Africa Regional Data Cube

The aim of this project was to bring data technology to five different African countries
that are not typical users of satellite data. Those countries are Ghana, Kenya, Senegal,
Sierra Leone, and, Tanzania. It was launched in May 2018 and initially based on Landsat
data. Nevertheless, Sentinel 1, Sentinel 2 and ALOS data are planned to be uploaded
too. The use cases were agriculture, flooding, urbanization, deforestation, and illegal
mining.[2]
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Swiss Data Cube

The Swiss Data Cube began with 5 years of downloaded Landsat Analysis Ready Data
in 2016. Nowadays there are over 30 years of Landsat, Sentinel 1 and Sentinel 2 over the
entire country. New data are automatically updated daily as new scenes become available.
The Swiss Data Cube’s products of interest are urbanization, cloud-free mosaics, and
snow cover. It was one of the first adopters of the Data Cube system for a national scale
platform.[2]

2.2 Satellites Data

The Open Data Cube is based on Earth Observation (EO) data from satellites. The
most common ones are the Sentinel and Landsat satellites which will be described in this
section.

2.2.1 Copernicus Programme and Sentinel Satellites

The Copernicus programme is a partnership between the European Commission (EC)
and the European Space Agency and its main goal is to provide Earth observation data
that is accurate, timely and easily accessible. The data provided can be used for en-
vironmental management, better understanding of the effects of climate change or civil
security amongst others. The data offered by Copernicus can provide services or appli-
cations mainly in atmosphere, marine, land, climate, emergency and security. [4]

The Sentinel Satellites are a family of satellites specifically designed by the European
Space Agency (ESA) to cover the needs of the Copernicus programme. The missions
that have already been sent are Sentinel 1, 2, 3 and 5P. Sentinel 4, 5 and 6 are under
development. [5]

Sentinel 1

The Sentinel-1A was launched in April 2014 and the Sentinel-1B in April 2016. Together
they form a constellation and take part in the same mission. The expected life of the
mission is for at least seven years.

The main objective of the mission is to provide radar data independently of the weather
conditions, day or night. It carries an instrument called C-band Synthetic Aperture Radar
which operates at wavelengths that are not hampered by clouds or lack of light. The
main applications of the mission are such as marine, land and disaster monitoring. [6]
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Sentinel 2

The Sentinel-2A was launched in June 2015 and the Sentinel-2B in March 2017. Mostly
all the Sentinels come in pairs, they form a constellation of two satellites with a phase of
180◦ like seen in Figure 2.4. The expected life of the mission is for at least seven years.

Figure 2.4: Orbital Configuration of the Sentinel-2 Constellation. [6]

The main objective of the mission is to provide multi-spectral images of the Earth and
continue the mission of the series of satellites SPOT and the USGS Landsat Thematic
Mapper instrument. The data collected can be used for different applications such as
climate change, land monitoring, security or emergency management. The data of the
Sentinel-2 was used for this master thesis. [6]

The instrument on-board the Sentinel-2 is the Multi-Spectral Instrument (MSI) which
has thirteen spectral bands or channels in the visible, near infrared and short wave in-
frared spectral ranges. Figure 2.5 is a screenshot of a table that summarizes the specifi-
cations.
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Figure 2.5: Wavelengths and Bandwidths of the MSI Instrument. [6]

The data produced by the Sentinel-2 can be divided in different levels depending on
the ”rawness” of the data. It is possible to download Level-1C and 2A from the ESA
website and that was done at RISE in order to ingest data into the Swedish Space Data
Lab.

Level-1C data corresponds to top of atmosphere reflectances whereas Level-2A is one
step further processed and corresponds to bottom of atmosphere reflectances. The level-
2A data were the one used in this master thesis. ESA performs some radiometric and
geometric corrections to the 2A level data. Furthermore, this level comes with five extra
computed bands:

• Aerosol Optical Thickness (AOT).

• Cloud Probability Band (CLD).

• Scene Classification Band (SCL). This was a crucial band for this thesis’ work and
it is explained in detail in Section 3.3.4.

• Snow Probability Band (SNW).

• Scene-average Water Vapour (WVP).
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Sentinel 3

The Sentinel-3A was launched in February 2016 and the Sentinel-3B in April 2018. To-
gether they form a constellation and take part in the same mission. The expected life of
the mission is for at least seven years.

The main objective of the mission is to provide measurements such as land and sea
surface temperatures in order to improve environmental and climate change monitoring.
It carries five instruments: Ocean and Land Colour Image (OLCI), Sea and Land Surface
Temperature Radiometer (SLSTR), Synthetic Aperture Radar (SAR) Altimeter (SRAL),
Microwave Radiometer (MWR) and Precise Orbit Determination (POD) instruments. [6]

Sentinel 5P

The Sentinel-5P is the precursor of the Sentinel-5 mission. It was launched in October
2017 to fill in the gap between the satellites Envisat and Sentinels 4 and 5. Its objective is
to monitor the Earth’s atmosphere and measure air quality, ozone and UV radiation. It
carries the instrument TROPOMI which is the acronym for TROPOspheric Monitoring
Instrument. [6]

2.2.2 Landsat Satellites

Landsat satellites were not used for this master thesis but the Open Data Cube started
with the purpose of making Landsat data available for everybody. The Landsat satellites
have the advantage of covering long timeline series as seen in Figure 2.6. The first Landsat
was launched in 1972 and since then there have always been at least two operating
Landsat satellites orbiting Earth.

Figure 2.6: Timeline of the Landsat Satellites. [7]
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2.3 Swedish Space Data Lab

The Swedish Space Data Lab is a two-year project funded by Vinnova that started in
June 2019. It is done as a collaboration between four partners: RISE (Research Institutes
of Sweden), the Swedish National Space Agency (SNSA), AI Innovation of Sweden and
Lule̊a Tekniska Universitet (LTU).

Inspired by the Open Data Cubes, the Swedish Space Data Lab aims to become the
Swedish Data Cube. It has data geographically located in Sweden and its main purpose
is to boost the usage of space data that helps in development of society and industry. It
aims to be the main data hub the Swedish authorities seek for earth observation data.

The end users can be very different, it could go from public authorities to large com-
panies or even private persons or individual farmers. The Space Data Lab uses and
develops AI-based analysis data in order to solve civil, environmental, agricultural, and
other type of problems. [8]

During the time this master thesis was being done, the Space Data Lab was just
starting and at the same time its platform was being built and developed, there was
a minor project inside called Pilot Mälardalen. The Pilot Mälardalen was a proof of
concept and it was ongoing between September and December 2019. The end user was
Landstyrelsen Västmanland (County Administrative Board of Västmanland) and the
main focus was the study of drought in that area. By the time this study was done, the
only available data within the SDL was Sentinel-2 level 2A from 2018 to date.

Figure 2.7: First Area of Sentinel-2 Data Ingested in the SSDL.
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Figure 2.8: Swedish Space Data Lab Schematic Overview. [8]

Figure 2.8 shows a schematic overview of the Space Data Lab structure. First the
satellite data is downloaded and stored in the ICE servers. Then the Open Data Cube
(ODC) structure is built around these data by indexing, ingesting and organizing the
data.

The three last boxes at the right show the three possible outcomes from the Open
Data Cube. Analysis Lab would be for example the use of Jupyter Notebooks. The box
for Applications refers to any API that could be built in a website, for example a snow
analysis, and that website has an interface and allows the user to select an area, then the
API access the data and the analysis tools from the ODC to display the results in the
website. The last box is about offering the possibility to combine other software with the
DC, for example Arc-GIS applications.

Since the Space Data Lab was in an early stage at the time of this master thesis, the
applications and services had not been developed yet.
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2.4 Data Cube Applications

A data cube is designed to be able to analyze scenario data together with historical
data. It provides the conditions for developing functions and services that can be used
to identify, illustrate and evaluate climate risks. Furthermore, evaluation of the benefits
of planned measures is possible, but also calculation of costs when these have a spatial
and timely aspect.

The ODC supports a broad range of applications including land, water, cloud, and
time series analysis. Some example applications are cloud-free mosaics or the calculation
of spectral indices.

2.4.1 Spectral Indices

Spectral indices calculate the relative magnitudes of wavelength components in order to
indicate the relative abundance of any feature of interest. The most popular ones are
vegetation indices but there are also other indices for burned areas, water, geologic or
man-made features. The two indices used in this master thesis were NDVI and MSI.
Some other indices are briefly mentioned in the report.

All these indices are defined using the names of the electromagnetic spectrum within
the visible and infrared (IR) ranges. In the case of the visible range names of colours are
used. The IR is divided as shown in Table 2.1:

Region Abreviation Typical wavelengths (µm)
Near Infra Red NIR [0.75 - 1.4]

Short Wave Infra Red SWIR [1.4 - 3]
Medium Wave Infra Red MWIR [3 - 8]

Long Wave Infra Red LWIR [8 - 15]
Far Infra Red FIR [15 - 1000]

Table 2.1: Infra Red Subregions.

NDVI

NDVI stands for Normalized Difference Vegetation Index. It tells whether there is green
vegetation or not in the pixel or area that it is being studied. Its physical principle is
based on the pigment in the leaves strongly absorbing visible light from 0.4 to 0.7µm
which use it for the photosynthesis. On the other hand, the leaves strongly reflect near-
infrared light from 0.7 to 1.1µm. The number of leaves that a plant has affects how much
these wavelengths are affected. The NDVI index can be calculated by:
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NDV I =
NIR−Red
NIR +Red

(2.1)

Figure 2.9 shows the difference in reflectances between dead, stressed or healthy leaves.
The biggest difference is between Red and NIR and that’s the reason those bands were
chosen for the NDVI. Healthy leaves reflect much more at NIR than stressed or dead
leaves whereas the red reflectance is lower in healthy than unhealthy. This makes a
greater difference between them and explains the higher values of NDVI for healthy
vegetation. Figure 2.10 shows the difference between the spectral signatures of healthy
and unhealthy vegetation.

Figure 2.9: Healty and Unhealthy Vegetation Reflectance.[9]

The values of NDVI can vary from [-1, 1]. If the value is in the range of [-1, 0] it
represents water bodies, [-0.1, 0.1] are usually rocks, sand or snow, [0.2, 0.5] represent
grasslands or crops, and [0.6, 1.0] correspond with dense vegetation or tropical rain-forest.
The higher the value of NDVI is, the higher the reflection of near-infrared is which means
more green vegetation.

MSI

MSI stands for Moisture Stress Index and as its name indicates it measures leaf water
content using reflectances. It is defined as the ratio of the bands:

MSI =

[
1600nm

820nm

]
(2.2)

Since it is a ratio and it is not based on a difference between two bands like NDVI, one
of the bands has to be used as reference. That is the 820nm band because water content
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does not affect, or affects very little, the reflectance measured at that wavelength. The
1600nm band can see different reflectances in spectral signatures depending on the water
content, therefore it can characterize water stress.

Some studies to find the most suitable bands to characterize MSI were done, [10], and
five different wavelengths were tested: 560nm, 680nm, 800nm, 1440nm and 1600nm. The
results found the best ratios to be 1440nm and 1600nm divided by any of the other three
wavelengths, being 1440nm and 1600nm the useful wavelengths for leaf water content
characterization. However, the absorption band of atmospheric water vapour is around
1440nm which would give a low signal to noise ratio for that wavelength. Hence, the
optimal ratio for space applications is R(1600nm)/R(800nm).

Figure 2.10 shows the differences in spectral signatures of healthy and dry vegetation in
green and red respectively. It can be seen that around 800nm the difference between the
signatures is minimum. On the other hand, around 1400nm and 1600nm the difference
is larger.

Figure 2.10: Healthy and Dry Vegetation Spectral Signatures in Green and Red, respectively.
[11]

The MSI has applications such as stress analysis, productivity prediction and mod-
elling, fire hazard condition analysis or studies of ecosystem physiology. Its values can
range from 0 to more than 3 being higher values associated to higher water stress. This
is usually inverted for other water vegetation indices for which higher values indicate
healthier vegetation. [12]
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Other Indices

Some other spectral indices that could be calculated using the Sentinel-2 bands are:

• NBR. Normalized Burn Ratio, used to estimate burn severity. It can be calculated
according to the formula below. Like the NDVI index, it can have a range in
between [-1, 1]. For values smaller than -0.1, it indicates post fire regrowth. Values
in between [-0.1, +0.1] mean unburned vegetation, [0.1, 0.27] low-severity burn,
[0.27, 0.66] moderate severity burn and greater than 0.66 indicate high severity
burn.

NBR =
NIR− SWIR1

NIR + SWIR1

(2.3)

• NDBI. It stands for Normalized Difference Buildup Index and it is used for the
detection of urban areas. It is similar to NBR but it has opposite sign.

NDBI =
SWIR1 −NIR
SWIR1 +NIR

(2.4)

• NDWI. It stands for Normalized Difference Water Index and it is used for water
detection.

NDWI =
Green−NIR
Green+NIR

(2.5)

• NDSI. It is a modified NDWI used for snow or water detection. It stands for
Normalized Difference Snow Index.

NDSI =
Green− SWIR1

Green+ SWIR1

(2.6)

• SAVI. It is the Soil Adjusted Vegetation Index used for soil response.

SAV I =
NIR−Red

NIR +Red+ 0.5
· 1.5 (2.7)

• EVI. Enhanced Vegetation Index it is another vegetation index. It enhances the
vegetation signal with improved sensitivity in high biomass regions.

EV I = 2.5 · NIR−Red
NIR + 6 ·Red− 7.5 ·Blue+ 1

(2.8)

2.5 Gaussian Process Regression

2.5.1 GPR Background

Supervised learning is the machine learning task that learns input-output mapping based
on empirical data. If the output is continuous then the problem is called regression
whereas if the output is discrete it is called classification.
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In general there is an input vector x and an output or target y. The vector x has the
information of all the input variables that can be multiple. Combining the input and the
output of the n observations, a dataset D can be defined as D = {(xi, yi) | i = 1, ..., n}.

The main goal of a supervised learning problem is to predict for new inputs x∗ that
are not part of the training dataset D. In order to do so, it is necessary to make some
assumptions of the function f that makes predictions for every possible input. There are
many different approaches but the main focus for this master thesis was on the so called
Gaussian Process Regressions. [13]

Gaussian Distribution

A Gaussian process is basically a generalization of the Gaussian probability distribution
and regression, as mentioned above, has to do with the continuity of the output. The
probability density function of a variable is Gaussian if it follows the formula:

ϕ(x) =
1√

2πσ2
exp

(−(x−m)2

2σ2

)
, x ∈ R (2.9)

for m ∈ R and σ > 0. Every Gaussian distribution is well defined by its mean m and
its standard deviation σ so it can be written as X ∼ N (m,σ2). This corresponds to a
uni-dimensional case (1D) but it can be generalized for multiple dimensions and then
it is called multivariate Gaussian distribution. Then, it follows the probability density
function below:

ϕ(x) = (2π)−D/2|K|−1/2 exp
(
− 1

2
(x−m)TK−1(x−m)

)
, x ∈ RD (2.10)

being m its mean and K the covariance matrix. The mean vector m ∈ RD has to be
such that mi = E[Xi] and the covariance matrix K is symmetric positive semi-definite
K ∈ RD×D and has the elements Kij = Cov(Xi, Xj) = E[(Xi − mi)(Xj − mj)]. A
multivariate Gaussian distribution can then be represented as X ∼ N (m,K) or X ∼
ND(m,K) needing only its mean and covariance matrix. [14]

Bayes’ Theorem

As mentioned before a Gaussian process is a generalization of the Gaussian probability
distribution that has just been described. The Gaussian Process works by assigning a
prior probability to every possible function that can predict the output, assigning higher
probabilities to the functions considered to be more likely. In order to make predictions
it uses Bayesian methods. The well known Bayes’ rule states that: [13]
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posterior =
likelihood× prior
marginal likelihood

, p(w | y,X) =
p(y |X,w) · p(w)

p(y |X)
(2.11)

The interpretation for Equation 2.11 is that a posterior distribution, p(w | y,X), can
be calculated by using the information on the observed data, p(y |X,w), and assigning a
prior distribution to a parameter w, p(w). Therefore, a posterior distribution is updated
or relocated based on the evidence (data) and a prior assumption on the distribution.

Predictive Distribution

Using Bayes Law, a posterior distribution is calculated and then used to get predictions
at the mentioned points, x∗, that are not part of the initial dataset. The difference
between x and x∗ is that the former refers to the input points which are all part of the
dataset. The latter refers to new points instead. The predictive distribution uses the
average over all possible parameter values and weights it by their posterior probability:

p(f ∗ |x∗, y,X) =

∫
w

p(f ∗ |x∗, w) p(w | y,X) dw (2.12)

Usually the prior and likelihoods are assumed to be Gaussian and even though it makes
things simpler, that is not the reason why it is chosen like that. The real reason is because
it is actually quite accurate with the reality. The predictive distribution also follows a
Gaussian distribution providing a mean value for the predictions with an uncertainty
band obtained from its variance. [13]

Prior and Posterior Interpretation

A good way to understand the prior and posterior concepts is by visual representation
as shown in Figure 2.11. Its subfigure (a) is a plot of three priors which corresponds
to assumptions made before having any data points or information, therefore the three
functions are plotted randomly.

The subfigure (b) shows how the three random functions are updated at the posterior
based on the information obtained from five observations. The shaded area represents
the confidence band or uncertainty which is obtained using the standard deviation. The
mean ± two times the standard deviation corresponds to a 95% confidence region. [13]
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Figure 2.11: Examples of Prior and Posterior for a Gaussian Process. [13]

2.5.2 GPR Theoretical Overview

The best interpretation for a Gaussian Process when used for Regression is a Gaussian
distribution over functions, and as a Gaussian, it can be specified by its mean, m(x), and
covariance functions, k(x, x’): [14]

f(x) ∼ GP(m(x), k(x, x′)) (2.13)

A training dataset was defined earlier as D = {(xi, yi) | i = 1, ..., n} and that is
equivalent to D = (X,y) being X a design matrix that contains all the input vectors
X = (x1, x2, ...xn) and y the target vector y = (y1, y2, ...yn)T .

The covariance matrix is interpreted as the covariances between all pair of points in
two datasets X1 and X2, K(X1, X2), where K(X1, X2)ij = k(x1i , x

2
j). The mean, m(x),

is usually assumed to be zero for simplicity.

It is necessary to define a model that can connect the output y(x) to the Gaussian
process function f(x). Normally, the output values do not correspond to the values of
f due to the presence of noise. The usual way of modelling it is by adding a Gaussian
noise, hence y(x) = f(x) + ε where ε ∼ N (0, σ2

n).

The covariance between the outputs is written as:

Cov(yp, yq) = k(xp, xq) + σ2
nδpq or Cov(y) = K(X,X) + σ2

nI (2.14)

The joint distribution of both, the observed values for the outputs y and the test input
points f∗ is:

(
y
f∗

)
∼ N

(
0,

(
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

))
(2.15)
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The predictive distribution can be expressed for both, the Gaussian process regression
f∗ and for the test targets y∗. As defined in 2.11, the distribution of the test input points
conditioned on the training dataset is:

f∗ |X∗, X, y ∼ N (E[f∗ |X∗, X, y], Cov(f∗ |X∗, X, y)) (2.16)

E[f∗ |X∗, X, y] = K(X∗, X)[K(X,X) + σ2
nI]−1y (2.17)

Cov(f∗ |X∗, X, y) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗) (2.18)

In the same way, the predictive distribution for the test targets y∗ is calculated by
adding the Gaussian noise σ2

nI to the covariance Cov(f∗ |X∗, X, y), leaving: [14]

y∗ |X∗, X, y ∼ N (E[y∗ |X∗, X, y], Cov(y∗ |X∗, X, y)) (2.19)

E[y∗ |X∗, X, y] = K(X∗, X)[K(X,X) + σ2
nI]−1y (2.20)

Cov(y∗ |X∗, X, y) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗) + σ2

nI (2.21)

2.5.3 GPR Python Implementation

There are many libraries in Python to implement any Gaussian Process Regression, and
the one chosen for this master thesis was GPflow [15]. The three most important choices
during model selection are the mean function, the covariance function kernel and the
hyperparameters.

Mean Function

The mean function is usually zero or the mean of the training data set. Its importance
lies with the fact that when two data points are quite separated, the prediction function
will tend to that mean value.

Covariance Function Kernel

When implementing a GPR, talking about covariance function or kernel is the same. Its
choice is the most important one because it is the covariance function that describes the
function to be predicted. In other words, it describes the relationship between the data
points and the predictions.
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The notion of similarity between data points is implied within the covariance function.
As a common assumption, it is accepted that points with similar inputs will have also
similar output values. Therefore, a prediction near a data point should have an outcome
very similar to the one in the data point. [14]

There are many different types of covariance functions such as constant, linear, polyno-
mial, squared exponential, Matérn, exponential, γ-exponential, rational quadratic, neural
networks, etc. According to Rasmussen and Williams the squared exponential (SE) is the
most commonly used and it is the one that was used in this master thesis. The equation
that defines a SE is as follows:

ky(xp, xq) = σ2
f exp

(
− 1

2`2
(xp − xq)2

)
+ σ2

nδpq (2.22)

being σ2
f the signal variance, ` the length-scale and σ2

n the noise variance. All three
parameters are also called hyperparameters.

Hyperparameters

The values of the hyperparameters can be trained and therefore obtain the optimal values
by maximizing the log marginal likelihood. Nevertheless, it is also possible to pre-define
their values and condition the prediction function. As Figure 2.12 shows, depending on
the values assigned to σ2

f , ` and σ2
n, the mean and the confidence band have different

outcomes.

The effect of length parameter ` is compared between the two subplots of the first row
of Figure 2.12. Higher values of ` give a smoother function because it means that the
predicted points have a relevant correlation to the closest data points along a particular
axis for longer and abrupt changes are less common. When the values of the length-
scale are low, the predicted points become quickly uncorrelated to the data points and
that causes the mean predicted function to look more teetering and the confidence bands
between data points to increase rapidly.

The signal variance σ2
f has an influence on the vertical variation of the function. The

second row of Figure 2.12 illustrates the differences, for high values of σ2
f the confidence

band becomes much wider outside the training data region.
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Figure 2.12: Effects of the Hyperparameters.

The noise variance σ2
n corresponds to the amount of noise when realizing the observa-

tions. It does not have to be modelled if the noise is not being considered or does not
exist. The last row of Figure 2.12 exemplifies its effect, when the noise is high the ap-
proximation becomes coarser and the confidence band wide in order to avoid over-fitting.
In the contrary, if there is no noise, the confidence band becomes very narrow. [13]

2.5.4 Advantages and Disadvantages

Gaussian Processes have the advantages:

• It is easy to define confidence intervals and evaluate if the fitting is good enough
thanks to the use of Gaussian probabilities.
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• Versatility in kernel specification. There are pre-defined kernels but it is always
possible to create and customize new ones.

• The observations are interpolated in prediction.

On the other hand, the main disadvantages of Gaussian processes are:

• Not being sparse which means that they use the full sample to predict.

• Not efficient in high dimensional spaces or big datasets. [13]

2.6 Validation of the Method

In order to validate the GPR done in this master thesis, a method called cross-validation
was used. It consisted of dividing the dataset into two: training and validation. Then the
predicted values were compared to the real values using the Root Mean Squared Error
(RMSE) and the Mean Absolute Error (MAE).

2.6.1 Root Mean Squared Error

The RMSE is used to measure the error of a model that predicts quantitative data. It is
formally defined as: [16]

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2
n

(2.23)

being n the number of observations, ŷi the predicted values and yi the observed values
in the original dataset.

2.6.2 Mean Absolute Error

The MAE also measures the error of a model that predicts data but it has an advantage
compared to the RMSE. It is better at ignoring the effects of possible outliers, giving a
more reasonable error. The formal definition is as follows: [16]

MAE =
1

n

n∑
i=1

| ŷi − yi | (2.24)

being n the number of observations, ŷi the predicted values and yi the observed values
in the original dataset.



Chapter 3

Material & Method

3.1 Software

This subsection describes the software used, directly or indirectly, for this master thesis.

3.1.1 GitHub

GitHub is an online platform used for developing software. There, many developers store
their code in repositories and it is free to use and access by anyone. It is a perfect tool for
collaborations because it allows version control, bug tracking, etc. All the documentation
relating the Open Data Cube used for this master thesis can be found in a GitHub
repository.

3.1.2 Kubernetes Platform

Kubernetes is an open-source system for automating deployment, scaling, and manage-
ment of containerized applications. The Space Data Lab requires substantial processing
and power unit for large scale image retrieval and analysis. In order to provide enough
computational power, a platform is deployed on the ICE cluster at RISE. Kubernetes
manages all the resources, scales the system and makes sure that GPU, CPU, memory
and storage are efficiently shared in a multi-user cluster.

3.1.3 Jupyter Notebooks

The main software used for this thesis is Jupyter Notebooks which is an open-source web
application that makes possible to create documents combining equations, interactive

29
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code, visualizations and markdown text. It is a Python language based software. Figure
3.1 shows what the environment looked like.

Figure 3.1: Jupyter Notebooks in JupyterLab Environment.

3.1.4 Software Python Libraries

Python is an open-source programming language designed with the purpose of being
easy to read and implement. It is well known that it does not come with every library
implemented, but since it is open source, anyone can develop a library that can then be
imported to Python and used by everyone. During this master thesis many libraries have
been used, some common libraries like pandas or numpy, but also others not so common
like the datacube. The most important ones are briefly summarized below:

Datacube

The Open Data Cube Core library was developed by Geoscience Australia and other
institutional partners. It basically consists of a software that contains functions to com-
municate with a database which contains information about the satellite data. The pos-
sibilities that this library offers are very wide, amongst others, categorize huge amounts
of Earth Observation data, provide a Python based API to access that data or provide
Exploratory Data Analysis tools.
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Pandas

Pandas is a library used for data manipulation and analysis. It allows the user to ma-
nipulate data in the form of tables or time series. It is good when the data structures
have two dimensions or less.

Xarray

Xarray is based on pandas and numpy. It is used for working with labeled N-dimensional
arrays. Even though numpy is the usual library for working with ND arrays, xarray has
some advantages that make easier working with that type of arrays. For example, xarray
has named dimensions instead of axis labels, also NaN or heterogeneous data can be
easily handled with xarray.

Matplotlib

Matplotlib is the commonly used plotting library for Python. It is used for 2D plotting
or to export images into other environments.

Geopandas

Geopandas is a library for working with geospatial data. It is based on pandas and
shapely, it extends the pandas’ datatypes to enable spatial operations on geometric ob-
jects. Those operations are performed by the library shapely, specialized on manipulation
and analysis of planar geometric objects.

Rasterio

Rasterio is the library made to read and write Geographic Information Systems (GIS) files
like satellite images or terrain models. Rasterio converts them into numpy N-dimensional
arrays and GeoJSON.

Ipywidgets

Ipywidgets is a library that allows the creation of interactive widgets in the Jupyter
Notebooks or IPython kernel. There are many different types such as buttons, slide bars,
date pickers, etc. This makes interaction between the data and the user much more
immersive.
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GPflow

It is an open source library for building Gaussian process models. It is based on Tensor-
Flow and has its origins in GPy. It has all the basic models of GPR implemented so they
can be used straightforward. It has less code than GPy because TensorFlow is in charge
of all the heavy computation. TensorFlow is a powerful numerical package very popular
for deep learning. [15]

Pickle

Pickle is a module in Python that can be used to serialize/de-serialize objects. ”Pickling”
an object means to convert it into a byte stream and ”unpickling” is the reverse action.

3.2 Hardware

3.2.1 GPU

All the data from the Space Data Lab is stored in the ICE datacenter facilities of RISE.
At the time of the work for this master thesis ten Dell Power Edge R730 equipped with
GPU were used in the cluster were the JupyterLab platform was deployed.

3.3 Jupyter Notebooks Preprocessing

After having defined all the material used for this master thesis in the two previous
subsections, the following sections will describe the method. The use case for the first
pilot project in the Space Data Lab was defined to be drought and the two indices
established to study it were the Normalized Difference Vegetation Index (NDVI) and the
Moisture Stress Index (MSI). Both indices have been previously defined in Section 2.4.1.
The steps that were taken are explained in the following subsections.

3.3.1 Import the Datacube and Check the Current Available
Products

As mentioned before the datacube is a library in Python that can be imported. The list
of products available when this thesis was being done consisted of five products as listed
in Table 3.1:
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ID Name CRS Resolution
1 s2a sen2cor granule EPSG:4326 10, 20, 60
2 s2b sen2cor granule EPSG:4326 10, 20, 60
3 s2a sen2cor sweref99tm 20 EPSG:3006 20
4 s2b sen2cor sweref99tm 20 EPSG:3006 20
5 s2a sen2cor sweref99tm 10 EPSG:3006 10

Table 3.1: Available Products in the Swedish Space Data Lab to Date.

Products 1 and 2 correspond to Sentinel-2A and 2B respectively. They are the first
ones that were uploaded and indexed in the Swedish Space Data Lab and use a Coor-
dinates Reference System (CRS) of EPSG:4326 which correspond to latitude/longitude
coordinates. The products that they offer are level-2A products, therefore all 12 bands
can be found repeated as many times as available resolutions (10m, 20m and 60m). In ad-
dition, there are six new bands named Aerosol Optical Thickness (AOT), Cloud Probabil-
ity (CLDPRB), Scene Classification Layer (SCL), Snow Probability (SNWPRB), Water
Vapour (WVP) and True Color Image (TCI).

Products 3, 4 and 5 use EPSG:3006 which corresponds to sweref99tm, a projected
coordinate system for areas in Sweden. They use only 20m resolution or 10m in the case
of product 5. Not all the bands have been uploaded. Products 4 and 5 have the following
bands: blue, green, red, red edge 1, red edge 2, red edge 3, nir 2, swir 2, swir 3, aot, scl,
tci and wvp. Product 5 has only 10m resolution bands and those bands are: blue, green,
red, nir 1, aot, tci and wvp.

The products used for the analysis are 4 and 5 combined because Sentinel-2A and 2B
are a constellation of satellites, therefore they have a phase between each other of 180◦.
The combination of both products allow the user to have more dates available.

3.3.2 Areas of Interest

During the development of the Pilot Mälardalen seven different areas in the region of
Västmanland were provided as shapefiles. A shapefile is a geospatial vector data format
for geographic information system software. Those were the areas of interest were the
analysis had to be done. The pre-processing and analysis worked independently of the
chosen area. The pre-processing steps will be explained using only one area at a time for
visualization examples.

Figure 3.2 is an overview map containing all the seven areas which were classified
as humid or dry healthy, from now on named as ”fuktigt” and ”torrfrisk” respectively.
Three red squares were drawn in Figure 3.2 in order to zoom in and identify all the areas
of interest.
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Figure 3.2: Area of Interest and Loaded Area from the Datacube.

Figure 3.3 (a) has two areas of interest named Sandholmarna and Ladug̊ardssjön
plotted in brown and blue respectively. Figure 3.3 (b) has four areas, two of them named
Asköviken but one classified as ”fuktigt” (purple) and the other as ”torrfrisk” (green).
The other two areas’ names are Lövsta and Rudökklippan which are plotted in yellow
and red respectively. Figure 3.3 (c) has the last area of interest plotted in orange and
named Måholmen.
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(a) Area 1. (b) Area 2. (c) Area 3.

Figure 3.3: Zoomed Areas.

Table 3.2 summarizes the classification of the seven areas of interest.

Fuktigt Torrfrisk
Asköviken Asköviken
Måholmen Ladug̊ardssjön

Sandholmarna Lövsta
Rudökklippan

Table 3.2: Classification of AOI.

3.3.3 Querying the Datacube and Loading the Data

The datacube has a lot of information, it has all the products summarized in Table 3.1
corresponding to a large area in middle Sweden from 2018 up to date. In order to query
the datacube a series of parameters are needed. Querying the datacube means to select
certain parameters to narrow down the data from the datacube that will be loaded into
that notebook for analysis purposes. For example, a date range might be selected, also a
coordinates reference system or a resolution in which the data can be loaded. Last but
not least, some coordinates have to be given to specify a local area.

For this thesis’ purpose, the coordinates reference system that was used was sweref99tm
with a resolution of 20m. It is also possible to choose specific bands of the Sentinel-2 to
load in order to speed up the loading time so only the required bands were selected. The
selected time period was between May and September, both inclusive, for 2018 and 2019
so two datasets were loaded for each year. In order to maximize the number of days cov-
ered by the satellite, those datasets were the combination of two products, number three
and four, the corresponding to sweref99tm crs with 20m resolution, one corresponding
to Sentinel-2A and the other to 2B.
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The coordinates loaded were defined by a shapefile defining any of the polygons of the
areas of interest. Figure 3.4 shows the polygon in blue for the example of Måholmen. The
red square represents the area that was loaded from the datacube in order to analyse
the area in blue. To define the red square, the polygon shapefile was read, then its
boundaries were identified together with the longest side. The rule was that the side of
the square had to measure at least 2000m in order to achieve an acceptable resolution
when plotting.

Figure 3.4: Area of Interest and Loaded Area from the Datacube.

The function in charge of finding the coordinates of the red square was named padding.
It checked that the longest side of the polygon measured at least 2000m, if it was so,
it padded a 5% of that length on each side and made the other side equal. In the case
that the side was less than 2000m, the distance padded was the remaining until the side
reached that length. The shortest side was padded to be equal and create a square.
Figure 3.4 shows the result.

Table 3.3 summarizes the two loaded datasets that were named Dataset 1 and Dataset
2. Both contained data between May and October inclusive but the former was for 2018
and the latter for 2019. They were loaded combining two products of the Datacube,
in other words, combining Sentinel-2A data with Sentinel-2B. Both used the Swedish
coordinate reference system and 20m resolution.



3.3. Jupyter Notebooks Preprocessing 37

Sentinel 2A Sentinel 2B May - Oct
Dataset 1 2018
Dataset 2 2019

Table 3.3: Creation of Dataset 1 and Dataset 2.

3.3.4 Creating Masks and Weight Matrices

Masking the Area of Interest

The purpose of this step was to create masks or the so-called weight matrices that would
help filtering between useful or invalid data. For example, the area of interest had a
certain shape but the data loaded was a square around it, therefore a mask to identify
that area was needed. Figure 3.5 shows the mask which consisted of a squared matrix for
a certain time. That matrix in JupyterLab had the form of an xarray which had ones for
the pixels that fell inside the area of interest and zeros for the rest. This way, a command
could be used specifying to only take into account pixels where the mask equaled one.

Figure 3.5: Left: RGB Image with Polygon Shape. Right: Mask for the Area of Interest.

Invalid Pixels Due to Satellite Sweep

Satellites orbit around the Earth and sweep its surface collecting data. The satellite’s
orbit is independent of the area being studied and it could be given the case that when
the satellite swept, the selected area was at the border and did not get fully covered.
That case would look like shown in Figure 3.6. A mask that identified those pixels was
also created.
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Figure 3.6: Left: RGB Image. Right: Classification of Valid/Invalid Pixels due to Satellite
Sweeping.

Scene Classification Layer

Satellites collect large amounts of data but not all of it might be useful for analysis
purposes. The Sentinel-2 data at the Swedish Space Data Lab was downloaded from the
European Space Agency. It is possible to download either Level-1C data or Level-2A.
With the Level-2A product a Scene Classification Layer is provided. Figure 3.7 shows
the convention values, colours, interpretations and labels.

Figure 3.7: Scene Classification Values. [17]
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As seen in Figure 3.7 it is possible to identify pixels and classify them as clouds, snow,
water, vegetation, bare soil, etc. The Scene Classification Layer also shorted as SCL
band was one of the most important or useful bands for this analysis.

Figure 3.8 shows the use of the Scene Classification Layer (SCL) to identify pixels
that were valid for the analysis and discard the ones that were not. The first picture
in Figure 3.8 is a RGB image used to compare the actual aspect of the landscape with
the classification obtained in the second picture. This case corresponds with the area of
interest called Sandholmarna. It was a good candidate to show the use of the SCL band
because it had clouds, vegetation and water properly identified. The legend for the SCL
image is Figure 3.7 itself.

Figure 3.8: Left: RGB Image. Middle: SCL Classification. Right: Pixels Selected as Valid.

The right image from Figure 3.8 shows the mask created using the SCL band. The
analysis consisted of the calculations of basically two indices and it was reasoned that it
would not make sense to calculate the NDVI over a pixel classified as cloud or snow. Other
pixel classifications such as no data, saturated or defective, dark area, cloud shadows or
unclassified were also discarded for analysis purposes. Therefore, a mask that contained
only pixels classified as water, vegetation or not vegetated (bare soil) was created. When
comparing the second and third images of Figure 3.8, a correlation between selected
pixels and red-green-blue pixels in the SCL classification was observed. The clouds or
other invalid pixels were masked out.

Weighted Matrices

Recapitulating, three different masks were created in order to identify the pixels that
would not be used for the analysis. Those masks were also called matrices because when
working with xarray all the masks information was presented in arrays or matrices that
usually had more than two dimensions.

The first one of them was used to select only the area inside the polygon that repre-
sented the area of interest (WAoI), the second one to identify pixels that had not been
swept by the satellite (Wsweep) and the third one, obtained using the SCL band, was used
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to identify pixels classified as vegetation, water or non-vegetation (Wscl). The combina-
tion of all three of them gave the total weight matrix, W:

W = WAoI ·Wsweep ·Wscl

3.3.5 Cloud Free Dataset

The datasets loaded from the datacube contained all the dates in the period selected
but some days were so cloudy that the satellite images were entirely covered by clouds.
During those days the reflectance measured by the satellite was the one reflected from
the clouds and not from the Earth surface. As a result, if those days were included in
the analysis, false values or results would be obtained.

Figure 3.9 shows the NDVI time series during a certain period for two different
datasets, one with clouds and one without. It is clearly appreciated how the cloud
free dataset follows a trend, whereas the dataset with cloudy days has an unpredictable
trend. This is the reason why a cloud free dataset had to be created.

Figure 3.9: NDVI Comparison Between a Cloud Free and a Non Cloud Free Dataset.

A function named remove clouds was created in order to identify cloudy days and
remove them from the original dataset. It used the weighted matrices previously created
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to check what percentage of cloud free or valid pixels were inside the area of interest.
In the case that more than 80% of it was clear of clouds or invalid pixels, the date was
added to a new dataset called filtered dataset (fds).

The resulting filtered datasets were double checked visually plotting all RGB images
next to the SCL classifications. No cloudy days were observed for the remaining dates.

3.3.6 NDVI and MSI

NDVI and MSI were calculated using the masks Wscl and Wsweep so all the invalid or
useless pixels were masked and the indices covered only valid pixels. Table 3.4 summarizes
the link between the indices formulas, the Sentinel-2 associated bands, their central
wavelengths and the SSDL name convention for those bands.

Formula S-2 Band S-2 Central λ (nm) SSDL Name

NDVI NIR − Red
NIR + Red

B8A (NIR) 864.7 nir 2
B4 (Red) 664.6 red

MSI
[
1600 nm
820 nm

] B11 1613.7 swir 2
B8A 864.7 nir 2

Table 3.4: NDVI and MSI Bands Selection Summary.

The Near Infrared (NIR) band had two possible choices of bands: band 8 or 8A. The
main difference between both of them was the bandwidth, being B8A narrower by 85nm.
They both were centered at the near infrared at 832.8nm for B8 and 864.7 for B8A. The
reason why B8A was chosen was because most studies used B8A due to it being more
comparable to the Landsat-8 band (B5) corresponding to NIR. [18] [19] [20]

Figure 3.10 shows an example of NDVI and MSI plots. The scale for MSI was reversed
so that both had green associated to moisturized areas. There is a clear correlation
between MSI and NDVI, the same areas that have low NDVI present high MSI which
means water stressed areas.
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Figure 3.10: NDVI and MSI Examples.

3.4 Jupyter Notebooks Analysis

The analysis purpose for the Pilot Mälardalen was to display three different views, being
the first one a comparison between the same period over two different years. The second
view was a time trend for both years using machine learning techniques and the third
one consisted of an interactive display. It had a play button and a slide bar made using
ipywidgedts which offered the possibility of selecting any day within the dataset to be
displayed.

3.4.1 Gaussian Process Regression

The technique of Gaussian Process Regression was useful to average the indices NDVI/MSI
over time, filling the gaps between observations. The goal was to present the trends in
vegetation for seven areas of interest so that they could be followed through a season or
compared with other years.

The four steps in order to get a GPR were: dataset preparation, model construction
or training, prediction and finally plot. The online documentation on GPflow was really
helpful to understand the implementation in Python. [21]

Dataset Preparation

As described in Section 2.5, the dataset needed to be composed by the matrix X and the
target vector Y :
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X =


t0 y0 x0
t1 y1 x1
...

...
...

tn yn xn

 , Y =


I0
I1
...
In

 (3.1)

The matrix X contained the input data which were the coordinates time, y and x
arranged in three vectors. The vector Y had the output data, in this case the NDVI/MSI
values corresponding to the coordinates in X.

The initial idea was to perform a Gaussian Process Regression for each of the seven
areas of interest separately and train the hyperparameters. However, it was observed
that doing the training for the seven areas together gave more stable results.

Using the pre-processing notebook described in Section 3.3, fourteen cloud-free datasets
together with their weight matrices were pickled and loaded at the beginning of this note-
book. Fourteen cloud-free datasets means one dataset per year and area, that is seven
areas and two years, 2018 and 2019.

The first function was called load pickles and it had two inputs, the area name and the
index to be calculated, NDVI or MSI. Its function was to load the two cloud-free datasets
corresponding to that area and their weight matrices, then combine the matrices into one,
W = Wscl ·Wsweep ·WAoI . At last, it would call another function named calculate index
which decided whether the function NDVI or MSI should be called. Those functions
calculated the indices over valid pixels and inside the area of interest. The function
load pickles returned two xarrays, one per year, with the corresponding values of the
selected index.

It is possible to model Gaussian processes in more than one dimension. In this case,
there were three dimensions, two spatial coordinates creating images 2D over time. There-
fore, the possibilities were to either calculate time trends predicting averaged values for
an area only in time, or to predict in time and space, for each pixel of the image and
then use the values to plot time trends or maps. For the second choice the dataset size
would increase and Gaussian Processes might not perform so well. More advanced meth-
ods such as Sparse Gaussian Process Regression with the use of Variational Bayes were
explored, but decided to be out-of-scope for the purpose of the master thesis as good
results were obtained also with Gaussian process that predicted only the time-series.

After obtaining the xarray that contained the index values in the three dimensions it
was necessary to average them over x and y. The function named conc xy did so, keeping
one x-coordinate and one y-coordinate which means that every image got a mean value
with a location in the middle of the area of interest. This was needed in order to train
the dataset for the seven areas together.

Finally the function collect created a DataFrame with the columns: area name with
year, time in date-time format, y-coordinates, x-coordinates, index values and time in
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time-stamp format. Subtracting the columns time-stamp, y and x, X train was defined.
The same way, subtracting the column for the index, Y train was created.

Model Construction

In this step, a model for the seven areas together was trained. Training a model means
finding the optimal values of the hyperparameters and that is already implemented in
Python. For this thesis, it was only necessary to define Xtrain, Ytrain, a kernel and a mean
function (See Section 2.5.3). The values of the hyperparameters could be set to some
pre-defined values if needed but it was not the case.

The mean function was set to constant with an initial value of 0.5. That means its
initial value was set but at the end of the training Python had calculated a different
value. It kept being constant but with another value. The chosen kernel was RBF or
also known as Squared Exponential. It was defined in three dimensions with the ARD
option set to True allowing to have a length-scale parameter per dimension.

Prediction

The last step before plotting was to define some points distributed between the data
points. Those points were called prediction points. Then, the value of the mean function
with its variance had to be calculated for the prediction points. An offset of 30 days
before and after the first and last data points was set. A total of 100 prediction points
were distributed evenly in the defined period. This process was done inside a function
called prediction function.

Plot

The mean value and the variance were the outputs of the prediction function. Those
outputs were needed to plot the GPR. The mean value was plotted as a continuous
line and the variance was used to plot confidence bands. The errors obtained for the
distribution represented the uncertainty in the measurements and it could be visualized
in the confidence bands. Two times the standard deviation equals to a confidence band
of 95%. The original data points were plotted as crosses.
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Results & Discussion

4.1 Pilot Mälardalen

The analysis purpose for the Pilot Mälardalen was to display three different views, being
the first one a comparison between the same period over two different years. The second
view was a time trend for both years using machine learning techniques and the third
one was a day-by-day displayed with a play button and a slide bar using ipywidgedts.

Figure 4.1 is an example of the first view. It had three subplots, the first and second
were the averaged RGB bands for 2018 and 2019 respectively. The average was taken
over all the available dates for the selected period. Therefore, the first and second images
were presented as representative plots for the user to be able to get a visual feeling of
greenness during those periods.

Figure 4.1: Pilot Mälardalen Example of a First Analysis View.

The NDVI and MSI indices were calculated for both years and averaged. In order to
compare them the difference was plotted in the third subplot. The chosen scale was such
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that identified drier areas with red and wetter areas with blue.

Figure 4.1 is an example view of the area named Fuktigt Måholmen with MSI analysis.
It can be appreciated that the image for 2019 looks greener than the one for 2018 which
indicates that 2018 was a drier year. In the third plot, the difference of MSI between
both years appears blue which in the case of MSI, means a negative difference. Since high
values of MSI translate to high water stress levels, the year 2018 must have had higher
water stress values than the year 2019 in Måholmen. Hence, the second year, 2019, was
wetter and that is represented by blue. In the case of NDVI the difference would be
positive because healthier or hydrated vegetation have higher values of the index.

Figure 4.2 shows the time trends. The first and second subplot correspond to the
time trends of 2018 and 2019 respectively. The third subplot is both years combined. A
Gaussian Process Regression was used in order to predict the trends between the data
points. This particular view is produced using methodology improved upon since the end
of November when the report for the Mälardalen project was presented. After that date,
the thesis work focused on Gaussian processes time-series regression and better results
could be obtained compared to the project report.

Figure 4.2: Pilot Mälardalen Example of a Second Analysis View.

The three subplots shown in Figure 4.2 also correspond to the area named Fuktigt
Måholmen to continue with the same example. The results of MSI time trends support
the observations from the first view. Higher water stress is represented by high MSI
values and in Figure 4.2 is clearly shown how 2018 had higher values from July until
September. The difference is clear because the confidence bands separate themselves. In
the case of overlap it would not be possible to determine any difference with confidence
because the values could be within the same range.

The third view is shown in Figure 4.3. However, since it is a display widget, not all
the features can be appreciated in this report. The idea for the last view was to present a
RGB picture next to its corresponding NDVI/MSI image for every available date in the
period. The RGB picture helped the user to interpret the index results when comparing
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both images. The widgets allowed to display them date by date and offer the possibility
of selecting a specific day or pausing the display. The scales for NDVI and MSI were
chosen in a way that red was associated with dry, or water in the case of NDVI, and
green meant wet or healthy vegetation.

Figure 4.3: Pilot Mälardalen Example of a Third Analysis View.

The images displayed in Figure 4.3 also correspond to Fuktigt Måholmen. In this
case the selected index was NDVI to show that the analysis worked independently of the
index selection. The widget had two tabs, one per year, and both tabs had the same
layout. The datasets had 26 and 24 days for 2018 and 2019 respectively and all of them
were displayed in this view. The chosen date that appears in this report is 26th July
2018 which would be located at the MSI peak of the second view, see Figure 4.2. Other
dates with lower values of MSI or higher NDVI looked greener.

There were two type of red pixels in the NDVI image, some corresponded to water
and others to bare soil. Måholmen is an island and the water surrounding it might not
be noticeable in the RGB picture. Nevertheless, water was represented as red in NDVI,
having negative values. When the two images were compared, pixels corresponding to
soil appeared in light brown for the RGB image whereas water was dark green.

Comparing the two subplots of Figure 4.3 the correlation between NDVI values and
visual aspect of the ground could be seen. Lower values of NDVI represented dry soil or
unhealthy vegetation which were shown as red pixels. Those red pixels had actually a
different color in the RGB image than the rest of the soil. It could also be deduced that
there was no vegetation in those pixels, as generally, the greener the pixels appeared in
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the RGB image, the darker the green of the NDVI value.

4.2 Gaussian Process Regression

The Gaussian Process Regression was done to predict time trends in all seven areas
of interest together with confidence bands. The model was trained for the seven areas
combined because it gave more stable results. The parameter values after training the
model were summarized in Table 4.1:

Parameters Trainable Value
Time length-scale (`t) True 14.879 days

y length-scale (`y) True 0.1982 km
x length-scale (`x) True 1.4536 km

Kernel variance True 0.0065
Likelihood variance True 0.0009

Mean function True 0.7368

Table 4.1: Parameter Values of the GPR Model.

All the parameters were set to be trained which means that Python was in charge of
finding their optimal values. The mean function reached a reasonable mean value for all
the time trends. The likelihood variance corresponds to the noise variance and its value
was quite small. The found value for kernel variance or signal variance was also low.

The most interesting parameters for this study were the length-scales, in particular
the time length-scale. Its value was found to be 14.879, which meant that a particular
data-point had a correlation with other data-points to be predicted 15 days before or
after it. That translated to a smoothing of the time trend and less wiggly functions.
When the model was trained separately for each area there was no consistency on the
time scales and the predicted trends looked very different.

The spatial length-scales played a less important role than the time one. A central
reference coordinate was introduced for x and y in order to be able to make a 3D GP
regression but the goal was not to study spatial correlation. Table 4.2 summarizes the
selected coordinates in km.

The distance between areas in the x-direction was of the order of 20 km and the
x length-scale value was 1.45 km which meant that there would not be any influence
between areas. In the case of y-direction the distance between areas was of the order
of 1km and the length-scale parameter 0.19, an order of magnitude smaller. The time
length-scale was 15 days and the time between data-points could be 3-4 days, therefore
there was an important time correlation.
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Area X (km) Y (km)
F-Asköviken 583.3 6599.53
F-Måholmen 608.79 6598.99

F-Sandholmarna 569.19 6593.15
T-Asköviken 583.3 6599.36

T-Ladug̊ardssjön 571.08 6599.81
T-Lövsta 582.37 6598.79

T-Rudökklippan 582.51 6597.74

Table 4.2: Reference Coordinates in SWEREF of the Areas Used for GPR.

Figure 4.4 shows the results of the NDVI time trends obtained for 2018 and 2019 in
all seven areas. All 2018 data-points were represented by blue crosses whereas all 2019
by red crosses. The shadowed areas represented the confidence bands and their color
was associated with their corresponding year color. The blue and red continuous lines
represented the mean predicted values of the GPR.

All trends started with lower values of NDVI around April-May probably because
the vegetation had been covered by snow during winter and the trees might have lost
their leaves. Then the levels rose up for summer when everything looked green. After
September the normal trend was to decrease again. Most of the areas followed that trend
for 2019.

The year 2018 was a bit exceptional because of the heat waves recorded all over
Europe. Some of these areas presented a dip in NDVI around the end of July/beginning
of August. It was noticeable that all the dips occurred around the same days in 2018.
When the confidence bands between two years clearly separated, it was possible to say
that one year was drier than another because even within the margin error, the index
values would not be similar. That is the case of Fuktigt Måholmen, Fuktigt Asköviken
or Torrfrisk Asköviken.

Figure 4.5 shows the same plots as Figure 4.4 but for MSI instead of NDVI. Since
high MSI values equal to low values of NDVI, where the NDVI graphs had dips, the MSI
presented peaks. That was the case of the areas Fuktigt Måholmen and both Asköviken.
The confidence bands clearly separated in those cases and the dates corresponded also
to the end of July or beginning of August.

Other areas like Sandholmarna of Lövsta had slightly lower values of NDVI for 2018
than for 2019 but in the case of MSI those differences could be appreciated easier with
clearly separated confidence bands. In general, the year 2018 was drier than 2019.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.4: NDVI Trends in the Seven Areas of Interest.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.5: MSI Trends in the Seven Areas of Interest.
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4.3 Validation of the Method

In order to validate the method used for the GPR a method called cross-validation was
used. The idea of this method was to split the dataset into two datasets, training and
validation. From the 450 total data points, 50 were randomly removed and became the
validation dataset. The remaining 400 were used to train the model. Then the mean
value of NDVI/MSI at all 450 points was predicted. After that, the predicted values
could be compared with the real values in the dataset calculating the errors RMSE and
MAE. If the point was in the training dataset the error was called in-sample and if it
was in the validation, out-of-sample error.

That process was repeated for 1096 times in order to get statistical values of the
distribution created by the parameters of the different trained models. This provided
information about the robustness of the training procedure. Table 4.3 summarizes the
distributions of the three length-scales, the covariance or kernel variance and the likeli-
hood variance. It tells what are the mean, minimum and maximum values, the standard
deviations and the percentiles 25,50 and 75% which equals to a numerical description of
the histograms.

`t (days) `y (km) `x (km) cov lkv
count 1096 1096 1096 1096 1096
mean 14.9309 0.1871 1.6939 0.0064 0.0009
std 0.5905 0.0348 0.7633 0.0002 0.0000
min 9.4405 0.0072 0.6346 0.0031 0.0007
25% 14.5575 0.1845 1.1686 0.0063 0.0009
50% 14.8968 0.1912 1.3649 0.0065 0.0009
75% 15.2649 0.1992 1.8595 0.0066 0.0009
max 17.2602 0.3697 3.2137 0.0071 0.0015

Table 4.3: Statistics of the Model for 1096 Cases.

The mean values of NDVI/MSI were close to the values obtained for the model using
all 450 points described in Table 4.1. The values of the percentiles are better seen in box
plots like shown in Figure 4.6. The 50th percentile equals the median of the distribution
and it was represented by a golden line in the middle of the boxes. The 25th and 75th
percentiles correspond to the edges of the boxes. The lines going out from the boxes are
called whiskers and represent a 24.65% of the distribution on each side, leaving only a
0.35% out.

Figure 4.6 was plotted with two y-axes. The one on the left was used for the three
length-scales and the color used was blue. The axis on the right used green and it was
used for the covariance and the likelihood variance. As mentioned before, the variance
of the spatial length-scales was not important compared to the distance between areas.
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The time length-scale had a standard deviation of 0.6 days which is not so big given that
the time span between data points could be 4-5 days.

Figure 4.6: Box Plot of the Distributions of the Hyperparameters.

After training 1096 models, the predictions trends were made for all 450 data points.
Those values were compared to the real values in the dataset calculating the Root Mean
Squared Error (RMSE) and the Mean Absolute Error (MAE). The Mean Absolute Error
was used in order to minimize the effect of the outliers. A differentiation was made
between in-sample error and out-of-sample error, meaning that the former belonged to
the training dataset points and the latter to the validation dataset points.
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(a) (b)

Figure 4.7: RMSE and MAE Histograms for In-Sample and Out-of-Sample Errors.

Figure 4.7 shows the histograms for both, RMSE and MAE, distinguishing between
in and out-of-sample errors. The distribution for in-sample errors was sharper than
out-of-sample because the models were trained with those data points.

The optimization problem to determine kernel parameters always tries to find the best
values. If any kernel was possible, the curve would fit perfectly all the data points and
the in-sample error would be zero. This is not the case but when optimizing, the kernel
values obtained are those which minimize the in-sample error.

Since the models were trained with particular data points, it was expected that the
in-sample error for those points would be smaller than the out-of-sample. However, that
was not what the results showed when comparing the average values of RMSE and MAE
for all the models, the numbers were very close and there was no significant difference.
Table 4.4 summarizes the numbers.

RMSE MAE
Mean Std Mean Std

in-sample 0.112 0.008 0.089 0.007
out-of-sample 0.110 0.013 0.088 0.011

Table 4.4: Mean and Standard Deviation of MAE and RMSE.

Given that the out-of-sample error did not turn out to be much larger than the in-
sample, the method used was validated showing that there was no over-fitting.
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Conclusions & Future Work

5.1 Conclusions

This thesis contributed to increase the use of space data. It was a part of the start up of
the Space Data Lab in Sweden and the analysis tools developed during the thesis work
are now part of it. The main contributions of this thesis to the Space Data Lab were a set
of Jupyter Notebooks that will allow future users to get introduced with the DataCube
environment and its data, load datasets and filter out cloudy days, calculate indices like
NDVI or MSI and apply basic machine learning algorithms such as Gaussian Process
Regressions to visualize time trends.

Those tools were the first services the Space Data Lab was able to provide and they are
now available to governments or Swedish authorities, ready to use for different purposes
such as environmental, sustainability, development of society, etc.

The results obtained for the Pilot Mälardalen project showed time-series with confi-
dence bands that separated between the two years for most of the analyzed areas. The
methodology chosen was appropriate to compare year on year with respect to indicators
of drought and showed that 2018 was generally drier than 2019 . However, a comparison
between two years is not enough to draw conclusions on climate change and more data
is needed to study trends.

5.2 Future Work

During this thesis work some interesting topics that could need more research were en-
countered. Since they were beyond the scope of this project, they could be considered
future work or continuation of this thesis.

The current ESA algorithm used to provide the Scene Classification band (SCL) that
classifies pixels is not perfect and could need some improvements. It is an algorithm de-

55



56 Conclusions & Future Work

signed for Europe and when focusing on Sweden which is at the north, some assumptions
might be too general and not useful for Sweden in particular. There were some problems
sometimes with cloud identification and more commonly thin cirrus. It was also difficult
sometimes for the algorithm to differentiate between snow and clouds. Besides that, it
was accurate most of the time and this analysis relied on it most of the time. Future
work to improve this could be done using for example deep learning.

The Gaussian Process Regression was done to predict mean values of an index in
time but the next step would be to not only predict in time, predict in space too. The
idea would be to predict entire images between two data points or partially reconstruct
images were there are clouds or invalid pixels. GPR is a trusted method for small sample
size problems but has well known limitations for large data sets such as images since
time complexity scales as N3. One solution for this that could be further explored is
using Variational Bayes to find a sparse GPR that approximates to the original problem.
Alternatively, solutions based on deep learning with convolutional neural networks could
be explored as such has demonstrated good performance on similar problems, while
scaling better than GPR with the size of the problem

One of the main issues had during this thesis work was that the Swedish Space Data
Lab project started at the same time as the pilot Mälardalen. That implied that the
development of the platform had to be done at the same time the first users started
using it. As the platform was on early stages of development, it was not stable enough
at all times and the experience of this master thesis was used as feedback to continue
developing the platform. The SDL needs further work to improve its stability and more
data shall be added.
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